Desafinar para conseguir batidos

AfinacionBatidos03Se algunha vez escoitástedes un acordeón, o seu son amosa uns batimentos (subidas e baixadas de volume nos sonidos que produce), sobre todo en rexistros nos que xogan mais dunha lengüeta.
 
O acordeón é un instrumento musical, de vento, pero que se denomina de lengüeta libre, como a armónica. Consta de varios xogos de lenguetas que, en distintas combinacións, constitúen o xogo de rexistros do acordeón. A cantos mais xogos, mais rexistros ten o acordeón.
 
Pero hai un xogo que nunca soa el solo.

Outra historia de tubos

MarimbaC2G3Esta é outra marimba, a segunda, esta vez vai de C2 a G3 con A4 en 440, o que ven a ser que a lámina mais baixa ten una frecuencia fundamental de 65.4Hz do C2 ata os 196Hz do G3, de Do a Sol, unha octava e media para entendernos. O primeiro que chama a atención son os tubos, logo imos a iso, e arriba 12 láminas nunha soa fila, o que quere decir que non hai alteracións na escala (non hai bemoles, e non vale sacar a cousa de contexto), ven sendo o que os músicos chaman un instrumento diatónico, neste caso en Do Maior.

Por qué non ten duas filas?, Porque sairía demasiado grande e incómoda á hora de tocala, a lámina mais baixa mide mais de 500mm de longo e 100mm de ancho, incluso é un pouco alta, 1.3m. A razón de facer unha marimba con notas tan baixas foi certa fascinación polas notas baixas da anterior, e quixen ir unha octava mais abaixo, para que servise de instrumento de acompañamento... para dar os baixos.

Tubos por doquier

ResonadoresC3C6E para qué tanto tubo?

Pois esta foi a primeira marimba que me deu por construir, despois de experimentar con unhas cantas táboas de madeiras templadas (pino tea), a cousa non foi tan simple como parecía nun principio. Non se trataba de afinar só unha nota, a que lle da nome a cada lámina, senón tamén outras frecuencias que andaban por alí arriba.

Resulta que con unha lámina, ou calquer porción de material prismático (p.ex. un tubo), os modos de oscilación producen sobretonos (frecuencias por encima da mais baixa) que non son armónicos (non son múltiplos da primeira), e hai que andar cambiando a forma para conseguir que os sobretonos se convirtan an armónicos. Total, que hai que darlle forma ás láminas ata conseguir que esas frecuencias sexan múltiplos da nota fundamental, e ahí empeza o lío... múltiplos si, ¿pero cales?. A resposta a esa pregunta marca a diferencia entre xilófonos e marimbas, anque a resposta non é única: as marimbas gardan as proporcións 1:3:6 e os xilófonos 1:4:8, anque moitos autores indican xusto o contrario. O caso é que os xilófonos case sempre "atacan por arriba", con notas por encima de C4, e as marimbas arrancan moito mais abaixo, C2 e incluso A1, e onde mais se lucen.

Marcha pola Unidade

Esta foi a primeira canción que aprendín a tocar nas láminas. Non se trataba só de aprender uns compases, que si, senon que tamén que fose algo que tivese certo significado, unha historia.

E nada mellor que a combinación de Mikel Laboa e Bertolt Brecht, un cantautor que axudou a moitos vascos souberan que son vascos, homes de ben, e que tiveran fachenda de selo, cantando as letras dun home cheo de humanidade.

Unha pequena homenaxe ao pobo vasco que, cando aprendin esto, perdera a tres grandes homes en moi pouco tempo: Mikel Laboa, Chillida e Jorge Oteiza

Pequenos miragres de afinación

G3S01Seguimos co espectrograma de Fourier. Que un espectrograma saia como o da esquerda é un pequeno miragre, vexamos:

Por un golpe de gracia, o son que se analizou contén nada menos que CINCO frecuencias claras... non está mal para ser un cacho de madeira: as frecuencias son: 286.50Hz, 861.29Hz, 1722.33Hz, 3186.97Hz e 4843.73Hz.

Se dividimos a segunda, terceira, cuarta e quinta pola primeira obtemos 3.006, 6.011, 11.123 e 16.905.... as tres primeiras responden, case, á relación 1:3:6, a cuarta e a quinta, o que escrebe, ainda non atopou maneira de controlalas, pero a relación das tres primeiras era o que se andaba buscando. O lector preguntaráse qué raio era o que se estaba buscando.

Gracias a Fourier

Diagrama de Fourier do son dunha lámina de marimbaAlguén imaxina que é isto?.

Como xa se pode adiviñar polo título, os que oiron falar del dirán que tal parece un diagrama de Fourier, e acertaron.

Este en concreto correspóndese co son que emite unha lámina de marimba en pleno proceso de afinación, e está cerca do seu obxectivo, que non é outro quedar a nota que lle toca... e que teña un timbre agradable. E cómo se consegue esto? pois coa axuda de Fourier.

 

Gracias a Pitágoras

PitagorasConCordasA este home, hai unha chea de anos, como 2500, deulle por facer experimentos coas cousas, motivo polo que era despreciado porque eso de experimentar o consideraban unha debilidade (tiña que facer cousas coas mans porque non lle daba a cabeza!!). Como parece que lle gustaba a música, e prefería que houbera máis dun músico, preocupouse por averiguar qué sons quedaban "ben" cando se oían xuntos.

Así que se puxo a facer experimentos cun instrumento de corda, dunha soa corda, o monocordio, e chegou á conclusión de que os sons que quedaban ben xuntos eran aqueles que se producían con relacións de lonxitude de corda de números enteiros, canto máis baixos mellor. (1,2,3,4).

Este experimento, e sobre todo esa conclusión, marcou TODA a música occidental ate hoxe, incluída a escala musical coñecida como Pitagórica.

O da Consonancia e a Disonancia non son outra cousa que "sonidos que quedan ben xuntos"... ou non, e ten que ver cos armónicos.

AfinacionLaminasImaxe22Nunha corda homoxénea presa por ambos extremos e baixo tensión, un caso típico de instrumentos de corda musical, os modos de vibración son tales que a amplitude da oscilación nos extremos debe ser necesariamente cero. Dado que a propagación de cada onda é igual en todas as frecuencias, os diferentes modos de vibración producen frecuencias múltiples da fundamental (1,2,3,4 ...), tendo a peculiaridade de que cada oscilación pode descompoñerse en dúas ondas viaxando en direccións opostas, producindo o que se coñece como unha onda estacionaria. É por iso que os instrumentos de corda producen sons con sobretonos armónicos e, polo tanto, non disonantes.

Un instrumento de vento pode ser asimilado a un tubo aberto nun extremo e pechado polo outro ou a un tubo aberto nos dous extremos. No caso dun tubo pechado nun extremo, as ondas estacionarias son múltiplos enteiros impares da frecuencia fundamental, mentres que nun tubo aberto son múltiplos enteiros (pares e impares).

AfinacionLaminasImaxe19  AfinacionLaminasImaxe19 

G3S01Seguimos co espectrograma de Fourier. Que un espectrograma saia como o da esquerda é un pequeno miragre, vexamos:

Por un golpe de gracia, o son que se analizou contén nada menos que CINCO frecuencias claras... non está mal para ser un cacho de madeira: as frecuencias son: 286.50Hz, 861.29Hz, 1722.33Hz, 3186.97Hz e 4843.73Hz.

Se dividimos a segunda, terceira, cuarta e quinta pola primeira obtemos 3.006, 6.011, 11.123 e 16.905.... as tres primeiras responden, case, á relación 1:3:6, a cuarta e a quinta, o que escrebe, ainda non atopou maneira de controlalas, pero a relación das tres primeiras era o que se andaba buscando. O lector preguntaráse qué raio era o que se estaba buscando.

Coas alturas dos picos de frecuencia, a pesares de que a escala é logarítmica tanto en horizontal como en vertical, pódese unir con unha recta case perfecta. Que por dous puntos pasa unha recta xa sabíamos, que pode pasar por tres... vale, pero cinco é carambola. Que o eixo de frecuencias e as alturas estén en logarítmico non é casualidade, pois é así como percibimos o son.

G3S01 02E todo isto era o que se andaba buscando, anque non sempre se atopa. A afinación 1:3:6 de tres frecuencias, a fundamental e as duas seguintes, é o que se chama afinación triple, responde a criterios de sonido agradable establecido polo mestre Pitágoras (eso dos números simples), e ao primeiro que se lle ocurreu que as marimbas e os xilófonos había que afinarlles algo mais que a nota principal foi a Deagan, alá polos anos 20 do século XX, mirade si se tardou, e patentou a afinación triple. Esto proporciona un timbre característico ás marimbas (1:3:6), e ós xilófonos (que se afinan a 1:4:8), anque tamén se poden atopar afinacións de todo tipo, todas según as regras de Pitágoras.

O pedazo de madeira que deu ese sonido da as seguintes notas: D4-43cents, A5-37c, A6-36c, G7+28c, D#8-47c. Lástima das dúas últimas, pero se vos fixades a segunda é unha octava e unha quinta respecto da primeira, e a terceira é prácticamente unha octava respecto da segunda, a falta dun cent (que é un erro do 0.06%). Sonaba estupendamente, lástima que o seu propósito sexa ser un G#3, un 72% do que é. Haberá que seguir rebaixando.

Por certo, aquí pode verse a G#3 a punto de ser "procesada" para chegar ao seu obxectivo.

IMG 20180211 110742

G3S02

G3S03

G3S04

G3S05

O tempo e o son, en combinación co silencio, é a materia prima da música

Na música, os sons clasifícanse en categorías tales como: longas e curtas, fortes e débiles, agudas e graves, agradables e desagradables. O son sempre estivo presente na vida cotiá do home. Ao longo da historia o ser humano inventou unha serie de regras para ordenalo para construír algún tipo de linguaxe musical.

Unha nota musical non é máis que un son caracterizado por unha certa frecuencia e constancia. Cada nota é, basicamente, unha vibración que ten unha frecuencia particular. De feito, as notas musicais non son máis que a representación desa frecuencia.

Unha escala musical é un conxunto de notas. Debido á percepción igual ou similar dunha frecuencia dobre a unha dada as notas correspondentes ás frecuencias dobres reciben a mesma denominación, deste xeito repítese unha escala a través de frecuencias dobres da nota inicial. Isto ocorre non só na representación da música occidental, senón tamén na maioría das culturas.

A mesma nota soa diferente se se toca cunha flauta, un violín, unha trompeta, etc. Cada instrumento ten un timbre que o identifica ou o diferencia dos demais. Unha forma de identificar físicamente o timbre dun instrumento é realizar a descomposición da onda sonora nos seus compoñentes sinusoidais fundamentais mediante a aplicación da Transformada de Fourier.

A diferenza entre as notas producidas por diferentes instrumentos é, ademais da frecuencia fundamental que define a nota, o conxunto de frecuencias adicionais (xeralmente máis elevadas) que acompañan á base ou o son de frecuencia fundamental.

 

Oscilador simple formado por un muelle y una masaCada modo de oscilación compórtase como un sinxelo oscilador mecánico formado por un resorte e unha masa. Canto maior sexa o compoñente elástico, maior será a frecuencia de oscilación, e canto maior sexa a masa menor será a frecuencia da vibración.

A lei que rexe o seu comportamento é:

F = m*a = -k*y

(m = masa, a = aceleración, k = constante de resorte, y = desplazamento con respecto á posición de equilibrio).

Se a masa se move con respecto á posición de equilibrio e se libera, comezará a oscilar a unha frecuencia, cuxo cálculo é irrelevante, e que resulta ser f = raíz (k / m) / 2π. Esta oscilación manterase por un tempo, grazas á enerxía que se proporcionou movendo a masa da súa posición, que se perderá por fricción ata que finalmente volva á súa posición de equilibrio.

Si se desplaza la masa respecto de la posición de equilibrio y se suelta, empezará a oscilar a una frecuencia cuyo cálculo no viene al caso y que es f = raiz(k/m)/2π. Esa oscilación se mantendrá durante un tiempo, gracias a la energía que se aportó al desplazar la masa de su posición, que se irá perdiendo por el rozamiento hasta que finalmente vuelva a su posición de equilibrio.

Ao modificar o perfil da lámina nun determinado punto, elimínase masa, o que ten dúas consecuencias:

  • Disminución da constante elástica desa zona da lámina,

  • Disminución de la masa.

Se se realiza preto dun ANTINODO para un determinado modo de vibración, a frecuencia de oscilación dese modo diminuirá.

Se se realiza preto dun NODE para un modo de vibración particular, a frecuencia de oscilación para ese modo permanece case inalterada.

Se se fai preto dos extremos da barra, o efecto é só unha diminución en masa para TODOS os modos de vibración, xunto cun efecto de lonxitude menor, polo que a frecuencia de oscilación de todos os modos aumentará, se ben os primeiros modos, correspondentes a frecuencias máis baixas, experimentarán un aumento maior que o resto (debido á súa maior inercia, estando máis lonxe do nodo do extremo).

Zonas de rebaixe e modos afectados

 AfinacionLaminasImaxe06

Zona de rebaixe

Zona 1

Zona 2

Zona 3

Modos Afectados

Transversal 1 e 3

Transversal 2 e 1

Transversal 3 e 1

 AfinacionLaminasImaxe05Modos de oscilación transversais, posicións de nodos e antinodos

O cambio de perfil prismático, ao facer un rebaixe na parte central da lámina, produce un desprazamento cara aos extremos dos nodos e antinodos non centrais, polo que unha técnica é que as áreas para actuar están establecidas en función da estimación final da súa posición na lámina.

AfinacionLaminasImaxe33

Identificación de zonas de nodos (vermello) e antinodos (verde) para os tres primeiros modos de oscilación transversal e zonas de talla (azul) para proceder á afinación da lámina prismática.

Todo isto sería bastante sistemático ... se non fose que a medida que a lámina perde a súa condición prismática uniforme, por efecto dos rebaixes, e modifícase a posición dos nodos e antinodos non centrais.

PitagorasConCordasA este home, hai unha chea de anos, como 2500, deulle por facer experimentos coas cousas, motivo polo que era despreciado porque eso de experimentar o consideraban unha debilidade (tiña que facer cousas coas mans porque non lle daba a cabeza!!). Como parece que lle gustaba a música, e prefería que houbera máis dun músico, preocupouse por averiguar qué sons quedaban "ben" cando se oían xuntos.

Así que se puxo a facer experimentos cun instrumento de corda, dunha soa corda, o monocordio, e chegou á conclusión de que os sons que quedaban ben xuntos eran aqueles que se producían con relacións de lonxitude de corda de números enteiros, canto máis baixos mellor. (1,2,3,4).

Este experimento, e sobre todo esa conclusión, marcou TODA a música occidental ate hoxe, incluída a escala musical coñecida como Pitagórica.

O da Consonancia e a Disonancia non son outra cousa que "sonidos que quedan ben xuntos"... ou non, e ten que ver cos armónicos.

Hoxe sabemos que o dos sons consonantes e disonantes ten que ver coa relación de frecuencias, que si son múltipos ou de fraccións sinxelas... "quedan ben", e se non "son desagradables". Os diagramas actuais de consonancia e disonancia seguen respetando iso que dixo... Pitágoras.

disonancia

¿Cómo é esto dos números?

O primeiro número é o 1, parece obvio, pero é a maior consonancia: Se dous instrumentos tocan a mesma nota, aquí non pasa nada.

O segundo número é o 2, que define o que hoxe coñecemos como "octava". Unha nota calquera sona ben coa mesma da seguinte (ou de calquer octava). De feito a maioría das culturas fan escalas musicais con base á frecuencia doble, esto é, repiten a denominación das notas e encadenan as escalas por frecuencias dobles (Do, Re, Mi, Fa, Sol, La, Si, .... e volta a empezar, pero co doble de frecuencia)

O seguinte número é o 3, e para "para ter algo na octava" dividímolo por 2, así temos o 3/2, que non é outra cousa que o que hoxe chamamos "Quinta xusta" (DO-SOL)

O seguinte ven sendo o 4, para metelo na octava (entre 1 e 2), podemos dividilo entre 2, pero o 2 xa o tiñamos, así que o podemos dividir por 3, e temos 4/3, que é a "Cuarta Xusta" (DO-FA). Curiosamente unha cuarta non é outra cousa que "unha quinta do revés...."

Xa están as mais importantes, pero poderiamos seguir ata ter a escala completa: 5/3, a sexta maior (DO-LA), 5/4 a terceira maior (DO-MI), e cousas con números máis grandes, que xuntos non sonan tan ben pero van completando a escala, como os 7/4, séptima menor (DO-Sib), 9/8 a segunda maior (DO-Re) e así.

E con isto, se seguimos avanzando pola escala a base de dar saltos de quintas ou cuartas a través das octavas e reducindo todo á primeira octava, temos a escala musical que se leva usando en occidente dende hai máis de dous mil anos, ata as 12 notas de hoxe en día, con algún faio que xa vos contarei outro día, pero que vai valendo.

Por certo, nunha entendín esa insumisión matemática que fan os músicos, porque se vos fiades deles resulta que unha cuarta, seguida dunha quinta.... fan unha octava (ou unha segunda máis outra segunda... da unha terceira) Non sei a quén se lle ocurriría chamalas así pero cagouna ben cagada. Deixovos co monocordio.

 Monocordio

 

Sen imaxes
Sen imaxes