Desafinar para conseguir batidos

AfinacionBatidos03Se algunha vez escoitástedes un acordeón, o seu son amosa uns batimentos (subidas e baixadas de volume nos sonidos que produce), sobre todo en rexistros nos que xogan mais dunha lengüeta.
 
O acordeón é un instrumento musical, de vento, pero que se denomina de lengüeta libre, como a armónica. Consta de varios xogos de lenguetas que, en distintas combinacións, constitúen o xogo de rexistros do acordeón. A cantos mais xogos, mais rexistros ten o acordeón.
 
Pero hai un xogo que nunca soa el solo.

Outra historia de tubos

MarimbaC2G3Esta é outra marimba, a segunda, esta vez vai de C2 a G3 con A4 en 440, o que ven a ser que a lámina mais baixa ten una frecuencia fundamental de 65.4Hz do C2 ata os 196Hz do G3, de Do a Sol, unha octava e media para entendernos. O primeiro que chama a atención son os tubos, logo imos a iso, e arriba 12 láminas nunha soa fila, o que quere decir que non hai alteracións na escala (non hai bemoles, e non vale sacar a cousa de contexto), ven sendo o que os músicos chaman un instrumento diatónico, neste caso en Do Maior.

Por qué non ten duas filas?, Porque sairía demasiado grande e incómoda á hora de tocala, a lámina mais baixa mide mais de 500mm de longo e 100mm de ancho, incluso é un pouco alta, 1.3m. A razón de facer unha marimba con notas tan baixas foi certa fascinación polas notas baixas da anterior, e quixen ir unha octava mais abaixo, para que servise de instrumento de acompañamento... para dar os baixos.

Tubos por doquier

ResonadoresC3C6E para qué tanto tubo?

Pois esta foi a primeira marimba que me deu por construir, despois de experimentar con unhas cantas táboas de madeiras templadas (pino tea), a cousa non foi tan simple como parecía nun principio. Non se trataba de afinar só unha nota, a que lle da nome a cada lámina, senón tamén outras frecuencias que andaban por alí arriba.

Resulta que con unha lámina, ou calquer porción de material prismático (p.ex. un tubo), os modos de oscilación producen sobretonos (frecuencias por encima da mais baixa) que non son armónicos (non son múltiplos da primeira), e hai que andar cambiando a forma para conseguir que os sobretonos se convirtan an armónicos. Total, que hai que darlle forma ás láminas ata conseguir que esas frecuencias sexan múltiplos da nota fundamental, e ahí empeza o lío... múltiplos si, ¿pero cales?. A resposta a esa pregunta marca a diferencia entre xilófonos e marimbas, anque a resposta non é única: as marimbas gardan as proporcións 1:3:6 e os xilófonos 1:4:8, anque moitos autores indican xusto o contrario. O caso é que os xilófonos case sempre "atacan por arriba", con notas por encima de C4, e as marimbas arrancan moito mais abaixo, C2 e incluso A1, e onde mais se lucen.

Marcha pola Unidade

Esta foi a primeira canción que aprendín a tocar nas láminas. Non se trataba só de aprender uns compases, que si, senon que tamén que fose algo que tivese certo significado, unha historia.

E nada mellor que a combinación de Mikel Laboa e Bertolt Brecht, un cantautor que axudou a moitos vascos souberan que son vascos, homes de ben, e que tiveran fachenda de selo, cantando as letras dun home cheo de humanidade.

Unha pequena homenaxe ao pobo vasco que, cando aprendin esto, perdera a tres grandes homes en moi pouco tempo: Mikel Laboa, Chillida e Jorge Oteiza

Pequenos miragres de afinación

G3S01Seguimos co espectrograma de Fourier. Que un espectrograma saia como o da esquerda é un pequeno miragre, vexamos:

Por un golpe de gracia, o son que se analizou contén nada menos que CINCO frecuencias claras... non está mal para ser un cacho de madeira: as frecuencias son: 286.50Hz, 861.29Hz, 1722.33Hz, 3186.97Hz e 4843.73Hz.

Se dividimos a segunda, terceira, cuarta e quinta pola primeira obtemos 3.006, 6.011, 11.123 e 16.905.... as tres primeiras responden, case, á relación 1:3:6, a cuarta e a quinta, o que escrebe, ainda non atopou maneira de controlalas, pero a relación das tres primeiras era o que se andaba buscando. O lector preguntaráse qué raio era o que se estaba buscando.

Gracias a Fourier

Diagrama de Fourier do son dunha lámina de marimbaAlguén imaxina que é isto?.

Como xa se pode adiviñar polo título, os que oiron falar del dirán que tal parece un diagrama de Fourier, e acertaron.

Este en concreto correspóndese co son que emite unha lámina de marimba en pleno proceso de afinación, e está cerca do seu obxectivo, que non é outro quedar a nota que lle toca... e que teña un timbre agradable. E cómo se consegue esto? pois coa axuda de Fourier.

 

Gracias a Pitágoras

PitagorasConCordasA este home, hai unha chea de anos, como 2500, deulle por facer experimentos coas cousas, motivo polo que era despreciado porque eso de experimentar o consideraban unha debilidade (tiña que facer cousas coas mans porque non lle daba a cabeza!!). Como parece que lle gustaba a música, e prefería que houbera máis dun músico, preocupouse por averiguar qué sons quedaban "ben" cando se oían xuntos.

Así que se puxo a facer experimentos cun instrumento de corda, dunha soa corda, o monocordio, e chegou á conclusión de que os sons que quedaban ben xuntos eran aqueles que se producían con relacións de lonxitude de corda de números enteiros, canto máis baixos mellor. (1,2,3,4).

Este experimento, e sobre todo esa conclusión, marcou TODA a música occidental ate hoxe, incluída a escala musical coñecida como Pitagórica.

O da Consonancia e a Disonancia non son outra cousa que "sonidos que quedan ben xuntos"... ou non, e ten que ver cos armónicos.

Disonancia. 1. f. Son desagradable. 3. f. Música. Acorde non consonante.

Consonancia. (…) 4. f. Música. Cualidade dos sons que, ao escoitarse simultaneamente, producen un efecto agradable.

Como se pode comprobar as definicións non levan directamente a un cálculo matemático de que combinacións de frecuencias poden producir sons agradables ou desagradables.

AfinacionLaminasImaxe07O tema foi o resultado dunha polémica ao longo dos séculos, pois xa ocupou a Pitágoras de Samos, no século VI aC, que afirmaba, despois dos seus experimentos co monocordio, que dúas cordas similares, suxeitas á mesma tensión, producen un son harmonioso se as súas lonxitudes están en proporcións enteiras de números pequens (2:1, 3:2, 4:3 ...). Esta antiga proposta non só servía para definir os sons consonantes senón tamén a primeira escala musical de Occidente.

En tempos máis recentes, aínda que con base no mesmo principio que o enunciado por Pitágoras, os diagramas de consonancia e disonancia foron descritos como unha función das frecuencias que compoñen un son.

Segundo este criterio, instrumentos de cordas e vento producen naturalmente sons consonantes, xa que os principais tons son harmónicos da frecuencia fundamental, polo tanto múltiplos enteiros da frecuencia fundamental. Quizais por iso os instrumentos vento e cordas forman a base da maioría das agrupacións musicais.

Con todo, hai instrumentos que producen sons con notas base e sobretons inherentemente disonantes, como no caso da txalaparta (cada nota está composta por f1, f1 * 2,76, 5.40f1, 8.93f1) e o simandrón (usado por monxes cristiáns ortodoxo en áreas de dominación vello turco, onde foron prohibidos as campás) que non supón para os seus músicos unha cuestión de disonancia e desgusto, senon un timbre característico dunha identidade cultural, co que a polémica da disonancia está servida. 

AfinacionLaminasImaxe14  AfinacionLaminasImaxe26 

AfinacionLaminasImaxe30

O son, en física (1), é calquera fenómeno que inclúa a propagación de ondas elásticas (audibles ou non), xeralmente a través dun fluído ou outro medio elástico que esté xerado polo movemento vibratorio dun corpo.

O son audible consiste en ondas sonoras nunha gama de frecuencias específica, que se producen cando as flutuacións na presión do aire son convertidas en ondas mecánicas no oído humano, logo en impulsos nerviosos e así entendida polo cerebro.

O son, como calquera outra onda, conleva o transporte de enerxía sen transporte de materia, pero facendo uso da materia. Non se propagan no baleiro, ao contrario que as ondas electromagnéticas.

Se as vibracións ocorren na mesma dirección en que se propaga o son, é unha onda lonxitudinal e se as vibracións son perpendiculares á dirección de propagación é unha onda transversal.

O exemplo típico de ondas transversais son ondas do mar, onde o auga móvese verticalmente, pero a enerxía móvese horizontalmente (perpendicular ao movemento da auga).

Un exemplo dunha onda lonxitudinal simplificada é a distancia entre os aneis dun gusano.

O son é un tipo de ondas mecánicas lonxitudinais producidas por variacións de presión. Estas variacións de presión transfórmanse no oìdo en oscilacións mecánicas e despois impulsos nerviosos, producindo no cerebro a percepción do son.

Como todo movemento ondulatorio, o son pode ser representado matematicamente por unha función que contén espazo, tempo e perturbación, neste caso presión ou caudal.

Se a presión está representada nun lugar específico, a súa variación obtense ao longo do tempo, na forma dunha curva máis ou menos complexa, e iso sería o que se obtería se se colocase un micrófono nese lugar ou se percibiría se o oído estaba alí.

Os parámetros básicos dunha onda son: velocidade, lonxitude de onda, frecuencia, amplitude e fase. Estes parámetros non son completamente independentes, xa que a velocidade, a lonxitude de onda e a frecuencia están relacionados (v=lf). Nun medio dado (por exemplo, o ar), a velocidade de propagación é a mesma para todos os tons (frecuencias)

AfinacionLaminasImaxe32Mediante unha técnica matemática coñecida como Transformada de Fourier, calquera onda pode descompoñerse como a suma de varias ondas sinusoidales, tons puros, cada un coa súa amplitude ou contribución ao total. Esta operación é realizada polos equipos ou aplicacións cando mostran un espectrograma, onde se mostra un eixe horizontal que representa frecuencias con barras verticais proporcionais á amplitude ou enerxía en cada rango.

Esta descomposición simplifica o estudo dos sons complexos xa que permite estudar cada compoñente de xeito independente e combinar os resultados, xa que o efecto de cada ton non modifica o comportamento dos demais.

(1) A Física pode definirse como a ciencia que intenta explicar o mundo a través da matemática; o autor intentou evitar, sen conseguilo, a parte máis desagradable (para algúns) da física: ecuacións e fórmulas.

AfinacionLaminasImaxe28Para medir cal é a nota actual dunha lámina, xunto cos valores das frecuencias que a acompañan, pode recorrerse a dous métodos:

1) Análise do sonido completo mediante unha computadora con un micrófono e un software de adquisición e análise de son. Para facer a lámina oscilar o máximo posible en todos os modos de vibración, a lámina suxétase polo punto aproximado do nodo 1 (onde a corda de suxeición pasará no conxunto final) e golpearase cunha baqueta no extremo oposto. O motivo para golpealo ao final é que é a única área da lámina que oscila en todos os modos ao estar lonxe de todos os nós.

Utilizando un PC con windows, un micrófono acoplado mediante un dispositivo USB e o software Audacity pódese obtener un gráfico como iste:

 

AfinacionLaminasImaxe28Espectrograma do son dunha lámina G4 con afinación 1-4-8

Neste caso trátase da análise de son dunha folla G4 xa afinada, na que se poden observar os picos do gráfico da Transformada de Fourier correspondente á frecuencia fundamental (392 Hz), xunto con dúass e tres octavas (G6 e G8) e outros picos correspondentes a modos de oscilación superiores (Transversal 4 en D # 8 e outros picos menores correspondentes a modos laterais e torsionais).

2) Búsqueda de modos parciais usando un afinador. Esta técnica pode requirir un pouco máis de habilidade por parte do sintonizador, xa que os nodos e os antinodos non sempre están onde indican os cálculos teóricos ou as estimacións. Consiste en bater a lámina de maneira que o xeito en que se excita en maior medida é o que se desexa comprobar, polo tanto, é importante tanto o lugar por onde se suxeta a lámina como o lugar do golpe. En cada proba, o afinador debe estar preto da lámina e indicará a nota predominante só cando se produce o son,polo que se o que se está a procurar é unha nota superior, a frecuencia será máis alta e a duración do son será breve. Aínda así, a busca empregando este método só permite identificar a fundamental e os dous primeiros sobretonos, que é abondo para facer unha afinación triple. Non permite comprobar a presenza de oscilacións en modos laterais ou de torsión que poidan estar alterando o timbre desexado da lámina. É conveniente usar un sintonizador que indique a octava, para comprobar se se detecta unha nota próxima á desexada.

Para asegurarse de que un modo particular se produce mediante golpes cunha baqueta, é conveniente ter presente as frecuencias previsibles e o perfil de cada modo de oscilación. As recomendacións para os tres primeiros modos son:

 

Modo SuxecciónGolpe Baqueta 
Transversal 1  Nodo 1 (22%L)  Central 50%L  Branda 
Transversal 2  Centro (50%L)  Cuarto 25%L o 75%L  Semidura 
Transversal 3  Extremo (11%L)  Central 50%L  Dura 

Transversal 1

Transversal 2 Transversal 3 
AfinacionLaminasImaxe01 AfinacionLaminasImaxe03 AfinacionLaminasImaxe02

AfinacionLaminasImaxe22Nunha corda homoxénea presa por ambos extremos e baixo tensión, un caso típico de instrumentos de corda musical, os modos de vibración son tales que a amplitude da oscilación nos extremos debe ser necesariamente cero. Dado que a propagación de cada onda é igual en todas as frecuencias, os diferentes modos de vibración producen frecuencias múltiples da fundamental (1,2,3,4 ...), tendo a peculiaridade de que cada oscilación pode descompoñerse en dúas ondas viaxando en direccións opostas, producindo o que se coñece como unha onda estacionaria. É por iso que os instrumentos de corda producen sons con sobretonos armónicos e, polo tanto, non disonantes.

Un instrumento de vento pode ser asimilado a un tubo aberto nun extremo e pechado polo outro ou a un tubo aberto nos dous extremos. No caso dun tubo pechado nun extremo, as ondas estacionarias son múltiplos enteiros impares da frecuencia fundamental, mentres que nun tubo aberto son múltiplos enteiros (pares e impares).

AfinacionLaminasImaxe19  AfinacionLaminasImaxe19 

Esta foi a primeira canción que aprendín a tocar nas láminas. Non se trataba só de aprender uns compases, que si, senon que tamén que fose algo que tivese certo significado, unha historia.

E nada mellor que a combinación de Mikel Laboa e Bertolt Brecht, un cantautor que axudou a moitos vascos souberan que son vascos, homes de ben, e que tiveran fachenda de selo, cantando as letras dun home cheo de humanidade.

Unha pequena homenaxe ao pobo vasco que, cando aprendin esto, perdera a tres grandes homes en moi pouco tempo: Mikel Laboa, Chillida e Jorge Oteiza

 

Martxa baten lehen notak

Letra: Bertolt Brecht. (Ausburg 10/02/1898-Berlin 14/08/1956)

Música: Mikel Laboa (Donosti, 15/06/1934 - 1/12/2008)

Eguzkiak urtzen du gohian
gailurretako elurra
uharka da jausten ibarrera
geldigaitza den oldarra.
Gure baita datza iguzkia
iluna eta izotza
urratu dezakeen argia
utuko duen bihotza.
Bihotza bezain bero zabalik
besoak eta eskuak
gorririki ikus detzagun egia
argiz beterik burua.
Bakoitzak urraturik berea
denon artean geurea
etengabe gabiltza zabaltzen
gizatasunari bidea.
Inork ez inor menpekorik har
nor bere buruaren jabe
herri guztiok bat eginikan
ez gabiltz gerorik gabe.
Batek goserikan diraueno
ez gara gu asetuko
beste bat loturik deino
ez gara libre izango 
   El sol funde en lo alto
la nieve de las cimas
torrencialmente baja hacia los valles
un impulso incesante.
En nosotros está el sol
el corazón que puede fundir
y la luz que puede raspar
hielo y oscuridad.
Con tanta generosidad
como pasión,
veamos con claridad
toda la verdad.
Desbrozando cada uno el suyo,
y entre todos el nuestro
ampliemos sin interrupción
el camino humano.
Dueño cada uno de sí mismo,
nadie en lugar alguno dominado.
Unidos todos los pueblos
tendremos nuestro futuro.
En tanto haya un solo hambriento
no nos saciaremos.
Mientras haya un oprimido
no nos liberaremos.
Martxa Baten Lehen Notak
Sen imaxes
Sen imaxes