Desafinar para conseguir batidos

AfinacionBatidos03Se algunha vez escoitástedes un acordeón, o seu son amosa uns batimentos (subidas e baixadas de volume nos sonidos que produce), sobre todo en rexistros nos que xogan mais dunha lengüeta.
 
O acordeón é un instrumento musical, de vento, pero que se denomina de lengüeta libre, como a armónica. Consta de varios xogos de lenguetas que, en distintas combinacións, constitúen o xogo de rexistros do acordeón. A cantos mais xogos, mais rexistros ten o acordeón.
 
Pero hai un xogo que nunca soa el solo.

Outra historia de tubos

MarimbaC2G3Esta é outra marimba, a segunda, esta vez vai de C2 a G3 con A4 en 440, o que ven a ser que a lámina mais baixa ten una frecuencia fundamental de 65.4Hz do C2 ata os 196Hz do G3, de Do a Sol, unha octava e media para entendernos. O primeiro que chama a atención son os tubos, logo imos a iso, e arriba 12 láminas nunha soa fila, o que quere decir que non hai alteracións na escala (non hai bemoles, e non vale sacar a cousa de contexto), ven sendo o que os músicos chaman un instrumento diatónico, neste caso en Do Maior.

Por qué non ten duas filas?, Porque sairía demasiado grande e incómoda á hora de tocala, a lámina mais baixa mide mais de 500mm de longo e 100mm de ancho, incluso é un pouco alta, 1.3m. A razón de facer unha marimba con notas tan baixas foi certa fascinación polas notas baixas da anterior, e quixen ir unha octava mais abaixo, para que servise de instrumento de acompañamento... para dar os baixos.

Tubos por doquier

ResonadoresC3C6E para qué tanto tubo?

Pois esta foi a primeira marimba que me deu por construir, despois de experimentar con unhas cantas táboas de madeiras templadas (pino tea), a cousa non foi tan simple como parecía nun principio. Non se trataba de afinar só unha nota, a que lle da nome a cada lámina, senón tamén outras frecuencias que andaban por alí arriba.

Resulta que con unha lámina, ou calquer porción de material prismático (p.ex. un tubo), os modos de oscilación producen sobretonos (frecuencias por encima da mais baixa) que non son armónicos (non son múltiplos da primeira), e hai que andar cambiando a forma para conseguir que os sobretonos se convirtan an armónicos. Total, que hai que darlle forma ás láminas ata conseguir que esas frecuencias sexan múltiplos da nota fundamental, e ahí empeza o lío... múltiplos si, ¿pero cales?. A resposta a esa pregunta marca a diferencia entre xilófonos e marimbas, anque a resposta non é única: as marimbas gardan as proporcións 1:3:6 e os xilófonos 1:4:8, anque moitos autores indican xusto o contrario. O caso é que os xilófonos case sempre "atacan por arriba", con notas por encima de C4, e as marimbas arrancan moito mais abaixo, C2 e incluso A1, e onde mais se lucen.

Marcha pola Unidade

Esta foi a primeira canción que aprendín a tocar nas láminas. Non se trataba só de aprender uns compases, que si, senon que tamén que fose algo que tivese certo significado, unha historia.

E nada mellor que a combinación de Mikel Laboa e Bertolt Brecht, un cantautor que axudou a moitos vascos souberan que son vascos, homes de ben, e que tiveran fachenda de selo, cantando as letras dun home cheo de humanidade.

Unha pequena homenaxe ao pobo vasco que, cando aprendin esto, perdera a tres grandes homes en moi pouco tempo: Mikel Laboa, Chillida e Jorge Oteiza

Pequenos miragres de afinación

G3S01Seguimos co espectrograma de Fourier. Que un espectrograma saia como o da esquerda é un pequeno miragre, vexamos:

Por un golpe de gracia, o son que se analizou contén nada menos que CINCO frecuencias claras... non está mal para ser un cacho de madeira: as frecuencias son: 286.50Hz, 861.29Hz, 1722.33Hz, 3186.97Hz e 4843.73Hz.

Se dividimos a segunda, terceira, cuarta e quinta pola primeira obtemos 3.006, 6.011, 11.123 e 16.905.... as tres primeiras responden, case, á relación 1:3:6, a cuarta e a quinta, o que escrebe, ainda non atopou maneira de controlalas, pero a relación das tres primeiras era o que se andaba buscando. O lector preguntaráse qué raio era o que se estaba buscando.

Gracias a Fourier

Diagrama de Fourier do son dunha lámina de marimbaAlguén imaxina que é isto?.

Como xa se pode adiviñar polo título, os que oiron falar del dirán que tal parece un diagrama de Fourier, e acertaron.

Este en concreto correspóndese co son que emite unha lámina de marimba en pleno proceso de afinación, e está cerca do seu obxectivo, que non é outro quedar a nota que lle toca... e que teña un timbre agradable. E cómo se consegue esto? pois coa axuda de Fourier.

 

Gracias a Pitágoras

PitagorasConCordasA este home, hai unha chea de anos, como 2500, deulle por facer experimentos coas cousas, motivo polo que era despreciado porque eso de experimentar o consideraban unha debilidade (tiña que facer cousas coas mans porque non lle daba a cabeza!!). Como parece que lle gustaba a música, e prefería que houbera máis dun músico, preocupouse por averiguar qué sons quedaban "ben" cando se oían xuntos.

Así que se puxo a facer experimentos cun instrumento de corda, dunha soa corda, o monocordio, e chegou á conclusión de que os sons que quedaban ben xuntos eran aqueles que se producían con relacións de lonxitude de corda de números enteiros, canto máis baixos mellor. (1,2,3,4).

Este experimento, e sobre todo esa conclusión, marcou TODA a música occidental ate hoxe, incluída a escala musical coñecida como Pitagórica.

O da Consonancia e a Disonancia non son outra cousa que "sonidos que quedan ben xuntos"... ou non, e ten que ver cos armónicos.

Unha barra rectangular ten varios modos de vibración ou oscilación, os modos de oscilación transversais son aqueles que se utilizan para producir sons en instrumentos musicais como txalapartas, xilófonos, vibráfonos e marimbas.

En cada modo de vibración podemos distinguir NODOS e ANTINODOS:

Nodo de vibración : punto (ou liña) da folla que non experimenta movemento oscilatorio.

Antinodo : punto (ou liña) da folla que experimenta a máxima oscilación.

Os principais modos de oscilación transversal son os seguintes:

Modo transversal 1

AfinacionLaminasImaxe17   first transverse composite

Modo transversal 2

AfinacionLaminasImaxe18   second trransverse composit

Modo transversal 3

 AfinacionLaminasImaxe15  third transverse composite

Modo transversal 4

AfinacionLaminasImaxe16

Se a barra é homoxénea e de sección uniforme, como pode ser o caso das táboas dunha txalaparta, a frecuencia de oscilación do modo transversal 1 e os seguintes modos transversais vén dada polas seguintes fórmulas:

f1 ≈ 1.028*raiz(Y/d)*a/L2  fn ≈ 0.441*f1*(n+1/2)2 

Siendo a o espesor da barra, L a súa lonxitude, d a densidade e Y o módulo de Young (unha medida da elasticidade, maior canto máis ríxido). A frecuencia de oscilación é independente do ancho da barra, influíndo só no volume e as frecuencias de oscilación dos modos lateral e torsional.

Para unha barra homoxénea o resto das frecuencias de oscilación dos modos transversais son as seguintes:

Modo Frecuencia Posición respecto á fundamental 
Transversal 1  f1 ≈ 1.028*raiz(Y/d)*a/L2  Fundamental 
Transversal 2  f2 ≈ 2.76*f1  1758 cents = 1 octava + 1 cuarta aumentada - 42cent 
Transversal 3  f3 ≈ 5.40*f1  2920 cents = 2 octavas + 1 cuarta xusta + 20cent 
Transversal 4  f4 ≈ 8.93*f1  3790 cents = 3 octavas + 1 segunda maior - 10cent 

Polo tanto nunha lámina homoxénea os sobretons NON son harmónicos.

AfinacionLaminasImaxe30

O son, en física (1), é calquera fenómeno que inclúa a propagación de ondas elásticas (audibles ou non), xeralmente a través dun fluído ou outro medio elástico que esté xerado polo movemento vibratorio dun corpo.

O son audible consiste en ondas sonoras nunha gama de frecuencias específica, que se producen cando as flutuacións na presión do aire son convertidas en ondas mecánicas no oído humano, logo en impulsos nerviosos e así entendida polo cerebro.

O son, como calquera outra onda, conleva o transporte de enerxía sen transporte de materia, pero facendo uso da materia. Non se propagan no baleiro, ao contrario que as ondas electromagnéticas.

Se as vibracións ocorren na mesma dirección en que se propaga o son, é unha onda lonxitudinal e se as vibracións son perpendiculares á dirección de propagación é unha onda transversal.

O exemplo típico de ondas transversais son ondas do mar, onde o auga móvese verticalmente, pero a enerxía móvese horizontalmente (perpendicular ao movemento da auga).

Un exemplo dunha onda lonxitudinal simplificada é a distancia entre os aneis dun gusano.

O son é un tipo de ondas mecánicas lonxitudinais producidas por variacións de presión. Estas variacións de presión transfórmanse no oìdo en oscilacións mecánicas e despois impulsos nerviosos, producindo no cerebro a percepción do son.

Como todo movemento ondulatorio, o son pode ser representado matematicamente por unha función que contén espazo, tempo e perturbación, neste caso presión ou caudal.

Se a presión está representada nun lugar específico, a súa variación obtense ao longo do tempo, na forma dunha curva máis ou menos complexa, e iso sería o que se obtería se se colocase un micrófono nese lugar ou se percibiría se o oído estaba alí.

Os parámetros básicos dunha onda son: velocidade, lonxitude de onda, frecuencia, amplitude e fase. Estes parámetros non son completamente independentes, xa que a velocidade, a lonxitude de onda e a frecuencia están relacionados (v=lf). Nun medio dado (por exemplo, o ar), a velocidade de propagación é a mesma para todos os tons (frecuencias)

AfinacionLaminasImaxe32Mediante unha técnica matemática coñecida como Transformada de Fourier, calquera onda pode descompoñerse como a suma de varias ondas sinusoidales, tons puros, cada un coa súa amplitude ou contribución ao total. Esta operación é realizada polos equipos ou aplicacións cando mostran un espectrograma, onde se mostra un eixe horizontal que representa frecuencias con barras verticais proporcionais á amplitude ou enerxía en cada rango.

Esta descomposición simplifica o estudo dos sons complexos xa que permite estudar cada compoñente de xeito independente e combinar os resultados, xa que o efecto de cada ton non modifica o comportamento dos demais.

(1) A Física pode definirse como a ciencia que intenta explicar o mundo a través da matemática; o autor intentou evitar, sen conseguilo, a parte máis desagradable (para algúns) da física: ecuacións e fórmulas.

Diagrama de Fourier do son dunha lámina de marimbaAlguén imaxina que é isto?.

Como xa se pode adiviñar polo título, os que oiron falar del dirán que tal parece un diagrama de Fourier, e acertaron.

Este en concreto correspóndese co son que emite unha lámina de marimba en pleno proceso de afinación, e está cerca do seu obxectivo, que non é outro quedar a nota que lle toca... e que teña un timbre agradable. E cómo se consegue esto? pois coa axuda de Fourier.

 

O timbre non é outra cousa que o conxunto de sonidos puros que emite un instrumento musical, unha voz ou un son en xeral, pois poucas cousas das que oímos son sons puros, senon mesturas. Dise que un son puro correspóndese con una onda senoidal, dunha soa frecuencia, e ahí entra Fourier, que dixo que unha onda calquera sempre se pode descompoñer en suma de ondas senoidais... e deunos o método para atopalas. Moitos anos despois, os que xa sabían a teoría, fixeron que os ordenadores escoitasen e botasen contas, dando como resultado diagramas como os da imaxe que nos axudan a saber cales son esas ondas. Poer certo, esto foi o que escoitou o ordenador: uns golpes nun anaco de madeira, e o que se ve na primeira imaxe é o análise de Fourier do anaquiño sombreado.... parece un miragre!

Mostra de Son

G3S01Seguimos co espectrograma de Fourier. Que un espectrograma saia como o da esquerda é un pequeno miragre, vexamos:

Por un golpe de gracia, o son que se analizou contén nada menos que CINCO frecuencias claras... non está mal para ser un cacho de madeira: as frecuencias son: 286.50Hz, 861.29Hz, 1722.33Hz, 3186.97Hz e 4843.73Hz.

Se dividimos a segunda, terceira, cuarta e quinta pola primeira obtemos 3.006, 6.011, 11.123 e 16.905.... as tres primeiras responden, case, á relación 1:3:6, a cuarta e a quinta, o que escrebe, ainda non atopou maneira de controlalas, pero a relación das tres primeiras era o que se andaba buscando. O lector preguntaráse qué raio era o que se estaba buscando.

Coas alturas dos picos de frecuencia, a pesares de que a escala é logarítmica tanto en horizontal como en vertical, pódese unir con unha recta case perfecta. Que por dous puntos pasa unha recta xa sabíamos, que pode pasar por tres... vale, pero cinco é carambola. Que o eixo de frecuencias e as alturas estén en logarítmico non é casualidade, pois é así como percibimos o son.

G3S01 02E todo isto era o que se andaba buscando, anque non sempre se atopa. A afinación 1:3:6 de tres frecuencias, a fundamental e as duas seguintes, é o que se chama afinación triple, responde a criterios de sonido agradable establecido polo mestre Pitágoras (eso dos números simples), e ao primeiro que se lle ocurreu que as marimbas e os xilófonos había que afinarlles algo mais que a nota principal foi a Deagan, alá polos anos 20 do século XX, mirade si se tardou, e patentou a afinación triple. Esto proporciona un timbre característico ás marimbas (1:3:6), e ós xilófonos (que se afinan a 1:4:8), anque tamén se poden atopar afinacións de todo tipo, todas según as regras de Pitágoras.

O pedazo de madeira que deu ese sonido da as seguintes notas: D4-43cents, A5-37c, A6-36c, G7+28c, D#8-47c. Lástima das dúas últimas, pero se vos fixades a segunda é unha octava e unha quinta respecto da primeira, e a terceira é prácticamente unha octava respecto da segunda, a falta dun cent (que é un erro do 0.06%). Sonaba estupendamente, lástima que o seu propósito sexa ser un G#3, un 72% do que é. Haberá que seguir rebaixando.

Por certo, aquí pode verse a G#3 a punto de ser "procesada" para chegar ao seu obxectivo.

IMG 20180211 110742

G3S02

G3S03

G3S04

G3S05

Oscilador simple formado por un muelle y una masaCada modo de oscilación compórtase como un sinxelo oscilador mecánico formado por un resorte e unha masa. Canto maior sexa o compoñente elástico, maior será a frecuencia de oscilación, e canto maior sexa a masa menor será a frecuencia da vibración.

A lei que rexe o seu comportamento é:

F = m*a = -k*y

(m = masa, a = aceleración, k = constante de resorte, y = desplazamento con respecto á posición de equilibrio).

Se a masa se move con respecto á posición de equilibrio e se libera, comezará a oscilar a unha frecuencia, cuxo cálculo é irrelevante, e que resulta ser f = raíz (k / m) / 2π. Esta oscilación manterase por un tempo, grazas á enerxía que se proporcionou movendo a masa da súa posición, que se perderá por fricción ata que finalmente volva á súa posición de equilibrio.

Si se desplaza la masa respecto de la posición de equilibrio y se suelta, empezará a oscilar a una frecuencia cuyo cálculo no viene al caso y que es f = raiz(k/m)/2π. Esa oscilación se mantendrá durante un tiempo, gracias a la energía que se aportó al desplazar la masa de su posición, que se irá perdiendo por el rozamiento hasta que finalmente vuelva a su posición de equilibrio.

Ao modificar o perfil da lámina nun determinado punto, elimínase masa, o que ten dúas consecuencias:

  • Disminución da constante elástica desa zona da lámina,

  • Disminución de la masa.

Se se realiza preto dun ANTINODO para un determinado modo de vibración, a frecuencia de oscilación dese modo diminuirá.

Se se realiza preto dun NODE para un modo de vibración particular, a frecuencia de oscilación para ese modo permanece case inalterada.

Se se fai preto dos extremos da barra, o efecto é só unha diminución en masa para TODOS os modos de vibración, xunto cun efecto de lonxitude menor, polo que a frecuencia de oscilación de todos os modos aumentará, se ben os primeiros modos, correspondentes a frecuencias máis baixas, experimentarán un aumento maior que o resto (debido á súa maior inercia, estando máis lonxe do nodo do extremo).

Zonas de rebaixe e modos afectados

 AfinacionLaminasImaxe06

Zona de rebaixe

Zona 1

Zona 2

Zona 3

Modos Afectados

Transversal 1 e 3

Transversal 2 e 1

Transversal 3 e 1

 AfinacionLaminasImaxe05Modos de oscilación transversais, posicións de nodos e antinodos

O cambio de perfil prismático, ao facer un rebaixe na parte central da lámina, produce un desprazamento cara aos extremos dos nodos e antinodos non centrais, polo que unha técnica é que as áreas para actuar están establecidas en función da estimación final da súa posición na lámina.

AfinacionLaminasImaxe33

Identificación de zonas de nodos (vermello) e antinodos (verde) para os tres primeiros modos de oscilación transversal e zonas de talla (azul) para proceder á afinación da lámina prismática.

Todo isto sería bastante sistemático ... se non fose que a medida que a lámina perde a súa condición prismática uniforme, por efecto dos rebaixes, e modifícase a posición dos nodos e antinodos non centrais.

Sen imaxes
Sen imaxes