Desafinar para conseguir batidos

AfinacionBatidos03Se algunha vez escoitástedes un acordeón, o seu son amosa uns batimentos (subidas e baixadas de volume nos sonidos que produce), sobre todo en rexistros nos que xogan mais dunha lengüeta.
 
O acordeón é un instrumento musical, de vento, pero que se denomina de lengüeta libre, como a armónica. Consta de varios xogos de lenguetas que, en distintas combinacións, constitúen o xogo de rexistros do acordeón. A cantos mais xogos, mais rexistros ten o acordeón.
 
Pero hai un xogo que nunca soa el solo.

Outra historia de tubos

MarimbaC2G3Esta é outra marimba, a segunda, esta vez vai de C2 a G3 con A4 en 440, o que ven a ser que a lámina mais baixa ten una frecuencia fundamental de 65.4Hz do C2 ata os 196Hz do G3, de Do a Sol, unha octava e media para entendernos. O primeiro que chama a atención son os tubos, logo imos a iso, e arriba 12 láminas nunha soa fila, o que quere decir que non hai alteracións na escala (non hai bemoles, e non vale sacar a cousa de contexto), ven sendo o que os músicos chaman un instrumento diatónico, neste caso en Do Maior.

Por qué non ten duas filas?, Porque sairía demasiado grande e incómoda á hora de tocala, a lámina mais baixa mide mais de 500mm de longo e 100mm de ancho, incluso é un pouco alta, 1.3m. A razón de facer unha marimba con notas tan baixas foi certa fascinación polas notas baixas da anterior, e quixen ir unha octava mais abaixo, para que servise de instrumento de acompañamento... para dar os baixos.

Tubos por doquier

ResonadoresC3C6E para qué tanto tubo?

Pois esta foi a primeira marimba que me deu por construir, despois de experimentar con unhas cantas táboas de madeiras templadas (pino tea), a cousa non foi tan simple como parecía nun principio. Non se trataba de afinar só unha nota, a que lle da nome a cada lámina, senón tamén outras frecuencias que andaban por alí arriba.

Resulta que con unha lámina, ou calquer porción de material prismático (p.ex. un tubo), os modos de oscilación producen sobretonos (frecuencias por encima da mais baixa) que non son armónicos (non son múltiplos da primeira), e hai que andar cambiando a forma para conseguir que os sobretonos se convirtan an armónicos. Total, que hai que darlle forma ás láminas ata conseguir que esas frecuencias sexan múltiplos da nota fundamental, e ahí empeza o lío... múltiplos si, ¿pero cales?. A resposta a esa pregunta marca a diferencia entre xilófonos e marimbas, anque a resposta non é única: as marimbas gardan as proporcións 1:3:6 e os xilófonos 1:4:8, anque moitos autores indican xusto o contrario. O caso é que os xilófonos case sempre "atacan por arriba", con notas por encima de C4, e as marimbas arrancan moito mais abaixo, C2 e incluso A1, e onde mais se lucen.

Marcha pola Unidade

Esta foi a primeira canción que aprendín a tocar nas láminas. Non se trataba só de aprender uns compases, que si, senon que tamén que fose algo que tivese certo significado, unha historia.

E nada mellor que a combinación de Mikel Laboa e Bertolt Brecht, un cantautor que axudou a moitos vascos souberan que son vascos, homes de ben, e que tiveran fachenda de selo, cantando as letras dun home cheo de humanidade.

Unha pequena homenaxe ao pobo vasco que, cando aprendin esto, perdera a tres grandes homes en moi pouco tempo: Mikel Laboa, Chillida e Jorge Oteiza

Pequenos miragres de afinación

G3S01Seguimos co espectrograma de Fourier. Que un espectrograma saia como o da esquerda é un pequeno miragre, vexamos:

Por un golpe de gracia, o son que se analizou contén nada menos que CINCO frecuencias claras... non está mal para ser un cacho de madeira: as frecuencias son: 286.50Hz, 861.29Hz, 1722.33Hz, 3186.97Hz e 4843.73Hz.

Se dividimos a segunda, terceira, cuarta e quinta pola primeira obtemos 3.006, 6.011, 11.123 e 16.905.... as tres primeiras responden, case, á relación 1:3:6, a cuarta e a quinta, o que escrebe, ainda non atopou maneira de controlalas, pero a relación das tres primeiras era o que se andaba buscando. O lector preguntaráse qué raio era o que se estaba buscando.

Gracias a Fourier

Diagrama de Fourier do son dunha lámina de marimbaAlguén imaxina que é isto?.

Como xa se pode adiviñar polo título, os que oiron falar del dirán que tal parece un diagrama de Fourier, e acertaron.

Este en concreto correspóndese co son que emite unha lámina de marimba en pleno proceso de afinación, e está cerca do seu obxectivo, que non é outro quedar a nota que lle toca... e que teña un timbre agradable. E cómo se consegue esto? pois coa axuda de Fourier.

 

Gracias a Pitágoras

PitagorasConCordasA este home, hai unha chea de anos, como 2500, deulle por facer experimentos coas cousas, motivo polo que era despreciado porque eso de experimentar o consideraban unha debilidade (tiña que facer cousas coas mans porque non lle daba a cabeza!!). Como parece que lle gustaba a música, e prefería que houbera máis dun músico, preocupouse por averiguar qué sons quedaban "ben" cando se oían xuntos.

Así que se puxo a facer experimentos cun instrumento de corda, dunha soa corda, o monocordio, e chegou á conclusión de que os sons que quedaban ben xuntos eran aqueles que se producían con relacións de lonxitude de corda de números enteiros, canto máis baixos mellor. (1,2,3,4).

Este experimento, e sobre todo esa conclusión, marcou TODA a música occidental ate hoxe, incluída a escala musical coñecida como Pitagórica.

O da Consonancia e a Disonancia non son outra cousa que "sonidos que quedan ben xuntos"... ou non, e ten que ver cos armónicos.

G3S01Seguimos co espectrograma de Fourier. Que un espectrograma saia como o da esquerda é un pequeno miragre, vexamos:

Por un golpe de gracia, o son que se analizou contén nada menos que CINCO frecuencias claras... non está mal para ser un cacho de madeira: as frecuencias son: 286.50Hz, 861.29Hz, 1722.33Hz, 3186.97Hz e 4843.73Hz.

Se dividimos a segunda, terceira, cuarta e quinta pola primeira obtemos 3.006, 6.011, 11.123 e 16.905.... as tres primeiras responden, case, á relación 1:3:6, a cuarta e a quinta, o que escrebe, ainda non atopou maneira de controlalas, pero a relación das tres primeiras era o que se andaba buscando. O lector preguntaráse qué raio era o que se estaba buscando.

Coas alturas dos picos de frecuencia, a pesares de que a escala é logarítmica tanto en horizontal como en vertical, pódese unir con unha recta case perfecta. Que por dous puntos pasa unha recta xa sabíamos, que pode pasar por tres... vale, pero cinco é carambola. Que o eixo de frecuencias e as alturas estén en logarítmico non é casualidade, pois é así como percibimos o son.

G3S01 02E todo isto era o que se andaba buscando, anque non sempre se atopa. A afinación 1:3:6 de tres frecuencias, a fundamental e as duas seguintes, é o que se chama afinación triple, responde a criterios de sonido agradable establecido polo mestre Pitágoras (eso dos números simples), e ao primeiro que se lle ocurreu que as marimbas e os xilófonos había que afinarlles algo mais que a nota principal foi a Deagan, alá polos anos 20 do século XX, mirade si se tardou, e patentou a afinación triple. Esto proporciona un timbre característico ás marimbas (1:3:6), e ós xilófonos (que se afinan a 1:4:8), anque tamén se poden atopar afinacións de todo tipo, todas según as regras de Pitágoras.

O pedazo de madeira que deu ese sonido da as seguintes notas: D4-43cents, A5-37c, A6-36c, G7+28c, D#8-47c. Lástima das dúas últimas, pero se vos fixades a segunda é unha octava e unha quinta respecto da primeira, e a terceira é prácticamente unha octava respecto da segunda, a falta dun cent (que é un erro do 0.06%). Sonaba estupendamente, lástima que o seu propósito sexa ser un G#3, un 72% do que é. Haberá que seguir rebaixando.

Por certo, aquí pode verse a G#3 a punto de ser "procesada" para chegar ao seu obxectivo.

IMG 20180211 110742

G3S02

G3S03

G3S04

G3S05

Frecuencia fundamental : o que define unha nota, por exemplo LA4 = 440Hz.

Sobretono : compoñente dun son cuxa frecuencia é superior á frecuencia fundamental.

Harmónico : compoñente dun son cuxa frecuencia é un múltiplo da frecuencia fundamental.

Deste xeito verifícase que todos os harmónicos son sobretonos, xa que teñen un maior valor de frecuencia que o fundamental, pero non todos os sobretonos son harmónicos , xa que non sempre son múltiplos enteiros do fundamental.

Disonancia. 1. f. Son desagradable. 3. f. Música. Acorde non consonante.

Consonancia. (…) 4. f. Música. Cualidade dos sons que, ao escoitarse simultaneamente, producen un efecto agradable.

Como se pode comprobar as definicións non levan directamente a un cálculo matemático de que combinacións de frecuencias poden producir sons agradables ou desagradables.

AfinacionLaminasImaxe07O tema foi o resultado dunha polémica ao longo dos séculos, pois xa ocupou a Pitágoras de Samos, no século VI aC, que afirmaba, despois dos seus experimentos co monocordio, que dúas cordas similares, suxeitas á mesma tensión, producen un son harmonioso se as súas lonxitudes están en proporcións enteiras de números pequens (2:1, 3:2, 4:3 ...). Esta antiga proposta non só servía para definir os sons consonantes senón tamén a primeira escala musical de Occidente.

En tempos máis recentes, aínda que con base no mesmo principio que o enunciado por Pitágoras, os diagramas de consonancia e disonancia foron descritos como unha función das frecuencias que compoñen un son.

Segundo este criterio, instrumentos de cordas e vento producen naturalmente sons consonantes, xa que os principais tons son harmónicos da frecuencia fundamental, polo tanto múltiplos enteiros da frecuencia fundamental. Quizais por iso os instrumentos vento e cordas forman a base da maioría das agrupacións musicais.

Con todo, hai instrumentos que producen sons con notas base e sobretons inherentemente disonantes, como no caso da txalaparta (cada nota está composta por f1, f1 * 2,76, 5.40f1, 8.93f1) e o simandrón (usado por monxes cristiáns ortodoxo en áreas de dominación vello turco, onde foron prohibidos as campás) que non supón para os seus músicos unha cuestión de disonancia e desgusto, senon un timbre característico dunha identidade cultural, co que a polémica da disonancia está servida. 

AfinacionLaminasImaxe14  AfinacionLaminasImaxe26 

Esta foi a primeira canción que aprendín a tocar nas láminas. Non se trataba só de aprender uns compases, que si, senon que tamén que fose algo que tivese certo significado, unha historia.

E nada mellor que a combinación de Mikel Laboa e Bertolt Brecht, un cantautor que axudou a moitos vascos souberan que son vascos, homes de ben, e que tiveran fachenda de selo, cantando as letras dun home cheo de humanidade.

Unha pequena homenaxe ao pobo vasco que, cando aprendin esto, perdera a tres grandes homes en moi pouco tempo: Mikel Laboa, Chillida e Jorge Oteiza

 

Martxa baten lehen notak

Letra: Bertolt Brecht. (Ausburg 10/02/1898-Berlin 14/08/1956)

Música: Mikel Laboa (Donosti, 15/06/1934 - 1/12/2008)

Eguzkiak urtzen du gohian
gailurretako elurra
uharka da jausten ibarrera
geldigaitza den oldarra.
Gure baita datza iguzkia
iluna eta izotza
urratu dezakeen argia
utuko duen bihotza.
Bihotza bezain bero zabalik
besoak eta eskuak
gorririki ikus detzagun egia
argiz beterik burua.
Bakoitzak urraturik berea
denon artean geurea
etengabe gabiltza zabaltzen
gizatasunari bidea.
Inork ez inor menpekorik har
nor bere buruaren jabe
herri guztiok bat eginikan
ez gabiltz gerorik gabe.
Batek goserikan diraueno
ez gara gu asetuko
beste bat loturik deino
ez gara libre izango 
   El sol funde en lo alto
la nieve de las cimas
torrencialmente baja hacia los valles
un impulso incesante.
En nosotros está el sol
el corazón que puede fundir
y la luz que puede raspar
hielo y oscuridad.
Con tanta generosidad
como pasión,
veamos con claridad
toda la verdad.
Desbrozando cada uno el suyo,
y entre todos el nuestro
ampliemos sin interrupción
el camino humano.
Dueño cada uno de sí mismo,
nadie en lugar alguno dominado.
Unidos todos los pueblos
tendremos nuestro futuro.
En tanto haya un solo hambriento
no nos saciaremos.
Mientras haya un oprimido
no nos liberaremos.
Martxa Baten Lehen Notak

IMG 20180211 110742

Unha vez que coñecidos todos os fundamentos e mecanismos para a afinacción da frecuencia fundamental e os sobretons dunha lámina, pódese establecer un método iterativo ata que a lámina produza a nota desexada e as adcionais.

Os pasos deben realizarse cunha política moi conservadora, xa que a eliminación de material na zona central só fai baixar as frecuencias, de xeito que, se as frecuencias da folla son máis baixas do desexado, a única solución é eliminar material do remate ou acurtala, que afectará a calidade do son e pode alterar a posición dos nodos da nota fundamental.

Estableceuse o seguinte método para axustar unha lámina de marimba con relación 1-3-6 entre o modo fundamental e os dous primeiros harmónicos.

PASO 1 : Medir as frecuencias de oscilación dos tres primeiros tons da lámina. Obter os cents de distancia entre a situación actual ea desexada.

PASO 2 : Se a lámina está a menosr a 300 cents en cada un dos primeiros tres tons: vernizar, busque o nodo 1 e realice a perforación (se aínda non se fixo).

PASO 3 : Se a distancia do ton 1 ao obxectivo é maior que a dos tons 2 e 3, diminuír o espesor da zona 1.

PASO 4 : Se a distancia do ton 2 ao obxectivo é maior que a dos tons 1 e 3, diminuír o espesor da zona 2 e a zona 3.

PASO 5 : Se a distancia do ton 3 ao obxectivo é maior que a dos tons 1 e 2, diminuír o espesor da zona 3.

PASO 6 : Se a distancia dos tres tons ao destino é aproximadamente o mesmo, diminuír o espesor da zona 1.

PASO 7 : Se a distancia dos tres tons é inferior a 100 cents, cambiar ao modo fino manual para comprobar os tons con máis frecuencia, se non, repetir o paso 1

PASO 8 : Se a distancia de tres tons é menos que 30 cents, pasar modo manual moi fino para acadar o obxectivo de repetición das etapas 1 a 6, pero deixando repousar a lámina entre cada operación

PASO 9 : Se a distancia é inferior a 10 cents, reiniciar ao día seguinte nun modo moi fino (lixado)

Sen imaxes
Sen imaxes